3.6.29 \(\int \frac {\sec ^2(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\) [529]

Optimal. Leaf size=179 \[ \frac {(5 A+19 B-75 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(3 A+5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(A-B+9 C) \tan (c+d x)}{4 a^2 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

1/32*(5*A+19*B-75*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)-1/4*(A-B+
C)*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*sec(d*x+c))^(5/2)-1/16*(3*A+5*B-13*C)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)+
1/4*(A-B+9*C)*tan(d*x+c)/a^2/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.34, antiderivative size = 179, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {4169, 4093, 4086, 3880, 209} \begin {gather*} \frac {(5 A+19 B-75 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {(A-B+9 C) \tan (c+d x)}{4 a^2 d \sqrt {a \sec (c+d x)+a}}-\frac {(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac {(3 A+5 B-13 C) \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((5*A + 19*B - 75*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d)
 - ((A - B + C)*Sec[c + d*x]^2*Tan[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) - ((3*A + 5*B - 13*C)*Tan[c + d*
x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) + ((A - B + 9*C)*Tan[c + d*x])/(4*a^2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4086

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*B*m + A*b*(m + 1))/(b
*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B
, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 4093

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Dist[1/(b^2*(
2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4169

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*C
sc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m
+ 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m -
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {\int \frac {\sec ^2(c+d x) \left (2 a (A+B-C)+\frac {1}{2} a (A-B+9 C) \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(3 A+5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac {\int \frac {\sec (c+d x) \left (-\frac {3}{4} a^2 (3 A+5 B-13 C)-a^2 (A-B+9 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{8 a^4}\\ &=-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(3 A+5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(A-B+9 C) \tan (c+d x)}{4 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {(5 A+19 B-75 C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(3 A+5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(A-B+9 C) \tan (c+d x)}{4 a^2 d \sqrt {a+a \sec (c+d x)}}-\frac {(5 A+19 B-75 C) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac {(5 A+19 B-75 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(3 A+5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(A-B+9 C) \tan (c+d x)}{4 a^2 d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.
time = 25.51, size = 7172, normalized size = 40.07 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(869\) vs. \(2(156)=312\).
time = 0.17, size = 870, normalized size = 4.86

method result size
default \(-\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right )^{2} \left (-5 A \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-19 B \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+75 C \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-10 A \sin \left (d x +c \right ) \cos \left (d x +c \right ) \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-38 B \sin \left (d x +c \right ) \cos \left (d x +c \right ) \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+150 C \sin \left (d x +c \right ) \cos \left (d x +c \right ) \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+2 A \left (\cos ^{3}\left (d x +c \right )\right )-5 A \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-18 B \left (\cos ^{3}\left (d x +c \right )\right )-19 B \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+98 C \left (\cos ^{3}\left (d x +c \right )\right )+75 C \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+8 A \left (\cos ^{2}\left (d x +c \right )\right )-8 B \left (\cos ^{2}\left (d x +c \right )\right )+72 C \left (\cos ^{2}\left (d x +c \right )\right )-10 A \cos \left (d x +c \right )+26 B \cos \left (d x +c \right )-106 C \cos \left (d x +c \right )-64 C \right )}{32 d \sin \left (d x +c \right )^{5} a^{3}}\) \(870\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/32/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(-5*A*cos(d*x+c)^2*sin(d*x+c)*ln(-(-(-2*cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-19*B*cos(d*
x+c)^2*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)+75*C*cos(d*x+c)^2*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+co
s(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-10*A*sin(d*x+c)*cos(d*x+c)*ln(-(-(-2*cos(d*x+c)/(
1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-38*B*sin(d*x+c)
*cos(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)+150*C*sin(d*x+c)*cos(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c
)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+2*A*cos(d*x+c)^3-5*A*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-18*B*cos(d*x+c)^3
-19*B*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*sin(d*x+c)+98*C*cos(d*x+c)^3+75*C*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c
)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+8*A*cos(d*x+c)^2-8*B*cos(d*x+c)^2+72*C*cos(d*
x+c)^2-10*A*cos(d*x+c)+26*B*cos(d*x+c)-106*C*cos(d*x+c)-64*C)/sin(d*x+c)^5/a^3

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]
time = 4.33, size = 516, normalized size = 2.88 \begin {gather*} \left [\frac {\sqrt {2} {\left ({\left (5 \, A + 19 \, B - 75 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (5 \, A + 19 \, B - 75 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, A + 19 \, B - 75 \, C\right )} \cos \left (d x + c\right ) + 5 \, A + 19 \, B - 75 \, C\right )} \sqrt {-a} \log \left (-\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left ({\left (A - 9 \, B + 49 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, A - 13 \, B + 85 \, C\right )} \cos \left (d x + c\right ) + 32 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {\sqrt {2} {\left ({\left (5 \, A + 19 \, B - 75 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (5 \, A + 19 \, B - 75 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, A + 19 \, B - 75 \, C\right )} \cos \left (d x + c\right ) + 5 \, A + 19 \, B - 75 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left ({\left (A - 9 \, B + 49 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, A - 13 \, B + 85 \, C\right )} \cos \left (d x + c\right ) + 32 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/64*(sqrt(2)*((5*A + 19*B - 75*C)*cos(d*x + c)^3 + 3*(5*A + 19*B - 75*C)*cos(d*x + c)^2 + 3*(5*A + 19*B - 75
*C)*cos(d*x + c) + 5*A + 19*B - 75*C)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)
)*cos(d*x + c)*sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c) + a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)
) + 4*((A - 9*B + 49*C)*cos(d*x + c)^2 + (5*A - 13*B + 85*C)*cos(d*x + c) + 32*C)*sqrt((a*cos(d*x + c) + a)/co
s(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/3
2*(sqrt(2)*((5*A + 19*B - 75*C)*cos(d*x + c)^3 + 3*(5*A + 19*B - 75*C)*cos(d*x + c)^2 + 3*(5*A + 19*B - 75*C)*
cos(d*x + c) + 5*A + 19*B - 75*C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/
(sqrt(a)*sin(d*x + c))) - 2*((A - 9*B + 49*C)*cos(d*x + c)^2 + (5*A - 13*B + 85*C)*cos(d*x + c) + 32*C)*sqrt((
a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d
*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)**2/(a*(sec(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.69, size = 311, normalized size = 1.74 \begin {gather*} \frac {\frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left ({\left (\frac {2 \, {\left (\sqrt {2} A a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - \sqrt {2} B a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + \sqrt {2} C a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{8}} + \frac {\sqrt {2} A a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 9 \, \sqrt {2} B a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 17 \, \sqrt {2} C a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{a^{8}}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \frac {3 \, \sqrt {2} A a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 11 \, \sqrt {2} B a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 83 \, \sqrt {2} C a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{a^{8}}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a} - \frac {{\left (5 \, \sqrt {2} A + 19 \, \sqrt {2} B - 75 \, \sqrt {2} C\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{32 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/32*(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*((2*(sqrt(2)*A*a^6*sgn(cos(d*x + c)) - sqrt(2)*B*a^6*sgn(cos(d*x + c
)) + sqrt(2)*C*a^6*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2/a^8 + (sqrt(2)*A*a^6*sgn(cos(d*x + c)) - 9*sqrt(2
)*B*a^6*sgn(cos(d*x + c)) + 17*sqrt(2)*C*a^6*sgn(cos(d*x + c)))/a^8)*tan(1/2*d*x + 1/2*c)^2 - (3*sqrt(2)*A*a^6
*sgn(cos(d*x + c)) - 11*sqrt(2)*B*a^6*sgn(cos(d*x + c)) + 83*sqrt(2)*C*a^6*sgn(cos(d*x + c)))/a^8)*tan(1/2*d*x
 + 1/2*c)/(a*tan(1/2*d*x + 1/2*c)^2 - a) - (5*sqrt(2)*A + 19*sqrt(2)*B - 75*sqrt(2)*C)*log(abs(-sqrt(-a)*tan(1
/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a^2*sgn(cos(d*x + c))))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(5/2)),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________